Viscosity of Some Ozone Safe Refrigerants in Liquid Phase: Experiment and Correlation A.J. Grebenkov, O.V. Beliajeva, and V.N. Shupajev Institute of Power Engineering Problems Sosny, Minsk, Belarus To measure viscosity (μ) of refrigerants we applied the method of falling cylinder. The device constants were determined while carrying out the special calibrating test using n-hexane as a standard sample. It was estimated that the uncertainty in measurement of viscosity in liquid phase is less than 2.8%. Experimental data on viscosity of liquid R134a, R152a and R32 were acquired in a pressure range from saturated liquid pressure up to 16 MPa. The temperature range was 290-360 K. Our experimental data on viscosity are in agreement with data obtained using capillary method. We approximate the data by the following model: $$\mu = \mu_s \left[1 + \sum_{i=0}^2 \sum_{j=1}^2 K_y \tau^i \pi^j \right]$$ (1) where $\pi = [(P - P_s)/(P_c - P_s)]^{1/3}$, $\tau = 1 - T/T_c$; P_c and T_c are the critical point parameters, and P_s is a saturated vapor pressure. Viscosity at the saturated curve is presented by following equation where a regular part of viscosity at the critical point is a calculated constant: $$\mu_s = \mu_c \exp \left(K_o \tau^{1/3} + \sum_{i=1}^4 K_i \tau^i + M \tau^{11} \right)$$ (2) A standard deviation of 1.13% in experimental and calculated values was obtained using this model. It gives possibility to calculate the viscosity of refrigerants investigated in liquid phase in the range of parameters of 260-360 K and up to 15 MPa with errors of not more than 3%.